Újrahasznosítási hírek
A miénk plastic film screw press (squeezer/densifier) systems are primarily positioned for Europe and North America, where recyclers face a shared reality: higher labor costs, stricter quality requirements, and rising energy prices. Buyers in these regions typically prioritize equipment that can deliver:
- Stable moisture reduction for washed film (to improve extrusion stability and pellet quality)
- Lower operating costs through efficient dewatering and heat utilization
- Consistent throughput with minimal operator intervention
- Reliable performance on challenging feedstocks (printed film, mixed film, wet or contaminated film)
Europe (EU/UK): Demand is strongest in countries with mature recycling infrastructure and strong packaging-recycling targets—especially Germany, Italy, France, Spain, the Netherlands, Poland, and the UK. These markets often require tighter control of contamination and moisture to meet downstream pellet-quality expectations.
North America (USA/Canada): Many plants are scaling capacity to process more post-consumer film and commercial/industrial film. Common priorities include automation, uptime, and reducing energy use per ton, while maintaining consistent pellet quality for higher-value applications.
What Is a Plastic Film Screw Press System (Squeezer/Densifier)?
A plastic film screw press system is a mechanical dewatering + densifying stage used after a film washing line. It removes free water from washed film using compression and shear, converting wet, fluffy film into a hot, densified, low-moisture output that feeds more reliably into an extruder and pelletizer.
In a typical film line, the screw press sits after:
sorting → shredding → washing → (friction/float rinse) → mechanical dewatering → screw press (squeezer) → extrusion → pelletizing
Compared with basic centrifuges or simple squeeze rollers, a well-designed screw press can deliver:
- Lower and more stable moisture
- Hot, compacted output (densified film)
- Reduced air entrapment before extrusion
- Better line stability under real-world feedstock variation
Why Moisture Control Directly Impacts Costs and Pellet Quality
Moisture is not just “water.” In film recycling, moisture problems often come bundled with:
- detergent residue, fine contaminants, and organic traces
- ink volatiles (printed film)
- uneven drying due to film thickness variation
- water trapped inside folds and multilayer structures
If moisture is unstable, the extruder has to fight it. The result is familiar to any film recycler:
- bubbles/voids in pellets
- unstable melt pressure
- frequent screen changes (contamination + gels)
- lower throughput or forced slowdowns
- higher energy consumption per ton
- more scrap and more operator intervention
A screw press addresses the problem earlier—before the extruder becomes a “dryer.”
Primary Buyers: Who This System Is Built For
This system is designed for facilities that need to turn washed plastic film into stable, high-quality feedstock for extrusion and pelletizing. Typical customers include:
1) Plastic Film Recycling Plants (Post-Consumer & Post-Industrial)
- Operators processing LDPE/LLDPE film, stretch film, packaging film, shopping bags, agricultural film, and mixed flexible plastics
- Plants running a full line: sorting → shredding → washing → dewatering/squeezing → extrusion → pelletizing
2) Pelletizing / Granulation Facilities
- Producers upgrading from basic dewatering to better moisture control for improved melt stability
- Plants aiming for higher pellet consistency, fewer bubbles/voids, and reduced odor caused by residual moisture and volatiles
3) Washing Line Integrators & EPC/Turnkey Line Builders
- Engineering firms and integrators that supply complete film recycling lines and need a reliable squeezing/densifying stage to optimize the whole system’s ROI
4) Waste Management & MRF Operators Expanding into Film Recycling
- Operators adding film recycling capability to capture more value from flexible packaging streams
5) Plastic Converters & Manufacturers with Internal Recycling
- Factories reclaiming in-house film scrap and looking to reduce disposal costs and improve reprocessing efficiency
Typical Decision Makers
In Europe and North America, purchase decisions are usually led by:
- Plant Owners / General Managers (ROI and capacity)
- Operations Managers (uptime, staffing, stability)
- Process Engineers (moisture targets, pellet quality, line integration)
- Maintenance Managers (serviceability and wear parts)
Cost Reduction: Where the Screw Press Delivers Real ROI
When plants evaluate a screw press system, the most important question is not “how it works,” but where the money is saved. In real operations, savings typically come from five areas:
1) Higher Throughput and Fewer Slowdowns
Wet film behaves inconsistently and can overload feeders, cause bridging, or force the extruder to run at lower speed. A screw press outputs dense, warm, consistent material, which improves feeding and stabilizes extrusion.
Practical impact:
- more stable melt pressure
- fewer emergency stops
- improved run time per shift
- easier to maintain target output
2) Lower Energy Use per Ton
If moisture enters the extruder, energy is spent on:
- evaporating water
- compensating for melt instability
- running vacuum systems harder (and longer)
By removing water mechanically (which is generally cheaper than thermal removal), you reduce the energy load downstream.
What improves:
- lower kWh/ton for extrusion
- less thermal shock and fewer temperature swings
- reduced heating demand due to warmer densified feedstock
3) Lower Labor Cost Through Reduced Intervention
Many film lines rely on operator skill to “fight variability.” A screw press reduces the variability itself.
Where labor drops:
- fewer adjustments to feeders and extruder settings
- fewer shutdowns for cleaning and troubleshooting
- less time spent handling fluffy wet film (manual de-clogging, clearing bridges, etc.)
4) Better Pellet Quality (Higher Selling Price or Broader Buyer Access)
Moisture and volatiles are major contributors to:
- bubbles in pellets
- odor and steam-related defects
- poor surface finish
- unstable MFI behavior in downstream processing
Better moisture control can enable:
- more consistent pellet appearance
- fewer customer complaints/returns
- access to higher-value applications (depending on feedstock and overall line design)
5) Reduced Scrap, Downtime, and Maintenance Stress
Unstable wet feeding often increases:
- screen pack load and change frequency
- contamination carryover
- wear on screws, heaters, and downstream components
- “hidden downtime” due to constant micro-stops and re-start cycles
A stable densified feed reduces operational stress across the line.
ROI Analysis: How to Calculate Payback in a Film Recycling Plant
A simple and practical ROI model includes four measurable items:
- Extra output (tons/year) from improved uptime and stable throughput
- Energy savings (kWh/ton or $/ton) from lower drying burden and stable extrusion
- Labor savings ($/year) from reduced intervention and fewer stoppages
- Quality uplift ($/ton) if improved pellets reach better pricing or broader customer acceptance
ROI Formula (Simplified)
Annual Benefit = (Extra Tons × Margin per Ton) + Energy Savings + Labor Savings + Quality Uplift
Payback Period = System Investment / Annual Benefit
Note: The “margin per ton” should be your real margin (selling price minus variable costs), not revenue.
Example ROI Scenario (Illustrative)
To make the math clear, here is an illustrative example (numbers vary by plant and region):
Plant conditions:
- Washed film line producing 3,000–6,000 tons/year
- Current moisture fluctuations cause frequent slowdowns and quality issues
Conservative improvement assumptions after screw press upgrade:
- +8% effective uptime/throughput improvement
- -10% extrusion energy consumption per ton
- -1 operator-hour/day reduction in intervention (or equivalent cost reduction)
- reduced scrap and rework
Even under conservative assumptions, many plants see payback driven by:
- more sellable output (tons)
- fewer stoppages
- lower total operating cost per ton
If you want, we can build a custom ROI sheet using your actual numbers (capacity, kWh rate, labor rate, and scrap rate) so the payback estimate matches your site’s target market.
Key Performance Targets Buyers Ask For
When buyers in the EU/UK and North America evaluate screw press systems, they usually ask:
- Moisture consistency (not just average moisture)
- Throughput stability under mixed film and printed film
- Wear part cost and change intervals
- Ease of cleaning and maintenance access
- Integration compatibility with existing washing and extrusion lines
- Automation features (load control, torque protection, alarm logic)
How the System Integrates Into a Washing + Pelletizing Line
A screw press system is most effective when it is integrated as part of a stable flow:
- Stable feed from washing line (consistent washing and mechanical dewatering upstream)
- Screw press dewatering + densifying (mechanical water removal and compaction)
- Controlled discharge (dense, warm output directly to extruder feeding system)
- Extrusion optimized for melt quality, not forced to act as a dryer
In many upgrades, the screw press becomes the “stabilizer” that allows the extruder to run closer to its designed capacity.
Common Questions (FAQ)
Q1: Can the screw press handle printed film and mixed film?
Yes. Printed film and mixed film typically carry more volatiles and variation. The screw press helps by stabilizing moisture and feeding density, which reduces process shocks downstream.
Q2: Does it replace a dryer?
In many film lines, the screw press reduces or simplifies drying needs. Whether it fully replaces thermal drying depends on:
- your moisture target for extrusion
- your feedstock type and contamination
- your overall line design
Q3: Is it difficult for operators to use?
No. Most systems are built for straightforward operation with:
- load control and torque protection
- clear alarms and interlocks
- stable output that reduces manual intervention
Q4: What matters most for ROI—moisture reduction or densification?
Both matter. Moisture reduction improves melt stability, while densification improves feeding and throughput. The best ROI usually comes from the combination:
- stable moisture + stable feed density + fewer stops
Ready to Reduce Costs and Improve Pellet Stability?
If your plant is processing washed film and you’re fighting:
- unstable extrusion
- bubbles/voids
- downtime from wet feed
- high operating costs per ton
A plastic film screw press system is often one of the fastest ways to improve ROI because it stabilizes the most expensive downstream stage—extrusion and pelletizing.
Kapcsolat with your material type (LDPE/LLDPE/mixed film), capacity target, and current moisture range. We can recommend the right configuration and help you estimate ROI based on your local electricity and labor costs.
Ez a vásárlóknak szóló útmutató elmagyarázza, hogy mikor nem szabad műanyag zúzót használni, hogyan válasszunk zúzó és aprító között az anyag hossza, a reális kapacitási küszöbértékek alapján, és mely “nagy teherbírású” opciók feleslegesek gyakran.
Ez a cikk az újrahasznosítási szakemberek számára készült, és segít elkerülni a költséges hibákat, valamint kiválasztani a megfelelő méretcsökkentési megoldást az újrahasznosító sorához.
Ez a cikk ismerteti a műanyagok hét fő típusát, azokat az anyagokat, amelyeket általában újrahasznosítanak, mire használják az újrahasznosított műanyagokat, és az egyes újrahasznosítási folyamatokhoz szükséges tipikus berendezéseket. Gyakorlati, mérnöki alapú útmutató újrahasznosítók, üzemüzemeltetők és projektfejlesztők számára.
Ez a cikk ismerteti a PET-pelyhek főbb alkalmazási területeit, a gyakori minőségi osztályokat és az értéküket meghatározó műszaki mutatókat – a rostoktól és lemezektől kezdve a palackról palackra történő újrahasznosításig. Ideális újrahasznosító üzemek tulajdonosai, berendezésvásárlók és projektbefektetők számára.













